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Mass extinction in a dynamical system of evolution with variable dimension
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Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we
construct a general model where the diversity of species, i.e., the dimension of the equation, is a time-
dependent variable. The system shows very different behavior from the original replicator equation, and leads
to mass extinction when the system initially has high diversity. The present theory can serve as a mathematical
foundation for the paleontologic theory for mass extinction. This extinction dynamics is a prototype of dy-
namical systems where the variable dimension is inevitable.@S1063-651X~99!06707-0#

PACS number~s!: 87.23.2n, 87.10.1e, 05.40.2a, 05.65.1b
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INTRODUCTION

Mathematical biological models of evolution@1–6# have
been a recent object of study in relation to complex syste
@7#, in which the techniques of statistical physics play a po
erful role. In particular, the problem of the extinction of
species in an ecosystem@8# has been discussed within th
framework of physics@2–4,9#. On the other hand, the
mechanism of mass extinction has been a classical and
troversial problem studied by a number of researchers in
leontology @10–12# and evolutional biology@13#. The con-
clusions based on the results of these studies can be div
into two categories, one emphasizing exogenous shocks~bad
luck! @10,14–16# and the other, endogenous causes~bad
genes! @4,17#. By combining both views, a mathematic
model of mass extinction has been proposed@18#, which is
highly phenomenological. In this paper, we not only co
bine the views of the bad luck effect and the bad gene ef
in extinction, but also construct a model of mass extinct
starting from a traditional mathematical biological equatio
which describes the dynamics of populations of interact
species.

This model reflects the former view~the bad luck effect!,
e.g., the situation where several biotas, which have b
separated from each other for a long time, are suddenly
tegrated into a larger ecological network by some exogen
shock ~biotic fusion! @19,20#. ~One example of this kind o
large-scale extinction, caused by such biotic fusion, can
seen in a comparison of the number of families of land ma
mals in North America and South America before, durin
and after the formation of the Panama land bridge betw
the two continents in the Pleistocene epoch about two m
lion years ago@21#.! We assume that the interaction coef
cients for this produced ecosystem can be written in the fo
of a random matrix@22–24#. Meanwhile, following the latter
view ~the bad gene effect!, we adopt the concept of anex-
tinction threshold, which we introduce into the replicato
equations@1# of the population dynamics. We refer to the
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large dimensional replicator equations with random inters
cies interactions and the extinction threshold asextinction
dynamics.

The extensive numerical simulations show that the beh
ior of the extinction dynamics is quite different from th
behavior by the original replicator equations without an e
tinction threshold. First, the nature of phase space of
extinction dynamics is clarified, which can be characteriz
by a small number of parameters. That is to say, a distri
tion of a basin size of each attractor is characterized b
power law. Moreover, the dependence of the results on
parameters suggests that the original replicator equat
without the extinction threshold should also follow the sam
law. Therefore, extinction dynamics can be a powerful to
for investigating the complex behavior of the original rep
cator equations because extinction dynamics has ra
simple attractors, while the original replicator equations
ten have complex attractors, such as chaos orheteroclinic
cycles.

We also find several significant features that characte
mass extinction. Defining thediversityas the number of ex-
isting species, we first find that final value of this quantity
largely independent of its initial value. Second, we find th
mass extinction does not occur immediately after an envir
mental change, but begins after a number ofinduction times
@25#. The dependence of this time development of the div
sity, the extinction curve, on the parameters is extensive
studied. The time evolution of other important variables
also studied, which areaverage fitnessanddistribution of the
interspecies interaction coefficients.

MODEL

Replicator equations with random interspecies interactions

First, let us consider the following ordinary differentia
equations called thereplicator equations~RE! @1#,

dxi~ t !

dt
5xi~ t !S (

j 51

NI

ai j xj~ t !2 (
j ,k51

NI

ajkxj~ t !xk~ t !D ~1!

on anNI dimensional simplex

(
i 51

NI

xi~ t !51 @0<xi~ t !<1#. ~2!

ate
n.
842 ©1999 The American Physical Society
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PRE 60 843MASS EXTINCTION IN A DYNAMICAL SYSTEM OF . . .
The replicator equations have become well-establis
models in many fields@1#, including sociobiology, studies o
the prebiotic evolution of macromolecules, mathemati
ecology, population genetics, game theory, and even e
nomics. In particular,NI dimensional RE is equivalent to th
NI21 dimensional general Lotka-Volterra equation@1#, the
analysis of which is one of the main subjects of mathem
cal biology. The variablexi denotes thepopulation densityof
speciesi. NI denotes the initial number of species, that is,
initial value of diversity. The (i , j )th element of the matrix
A5(ai j ) determines the effect of speciesj on the change rate
of speciesi. Here we useaii 521 for intraspecies interaction
coefficients, and we assign the interspecies interaction c
ficients ai j ( iÞ j ) as time-independent Gaussian rando
numbers with mean 0 and variancev. In general, this ran-
dom asymmetric interaction matrix drives this system int
nonequilibrium state.

The assumptions we make for these asymmetric rand
interactions are based on the hypothesis that a biotic fu
reorganizes species relationships in a random fashion@20#.
This kind of ecosystem with random interaction can be p
duced, for example, by a reduction in a habitat area, wh
paleontologists have asserted to be a trigger for mass ex
tion @12#. Because the reduction in a habitat area may con
many biologically isolated species to a narrow area, it dri
them into competition and, eventually, brings about bio
fusion. In this sense, a large-scale biotic fusion of many b
tas can occur as well as a fusion of two biotas@20#. More-
over, even a biotic fusion of only two biotas~as the forma-
tion of the Panama land bridge! may change the interactio
ai j even if bothi th and j th species belong in a same biot
and the two-biota fusion may yield a randomai j because, for
example, the biotic fusion may changes the preference
predation for each species~e.g.,i th species in North America
may preferkth species in South America thanj th species in
North America!.

Here we note that, for example, for marine animals,
biotic fusion can take place not only by a decline in sea lev
which causes habitat area reduction, but also by an incr
in the sea level, which causes a connection of sea areas
rated from each other for a long time. Therefore, the bio
fusion hypothesis here can be an explanation for the ques
of why a number of mass extinctions take place becaus
both the decline or the increase in the sea level. One of
purposes of the present study is to show that any large-s
biotic fusion and any subsequent random interspecies in
actions may play a role in the bad luck effect for mass
tinction.

Several pioneering studies of such a random interac
model have been carried out using the theory of rand
systems. However, these studies have dealt with lim
cases, such as the local stability condition for a linear vers
of RE @23#, the replica variational theory for RE with sym
metric random interactions, which ensures equilibrium sta
@2#, and the dynamic mean field theory for noise-driven R
with asymmetric interactions@3# only in the parameter re
gion, where the asymmetry is weak and the system is
sured to approach a fixed point. On the other hand, the gl
behavior of RE with fully asymmetric random interaction
hardly treated analytically, because the equations are hi
nonlinear and the dynamics often show not only converge
d
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to a fixed point, but also complex behavior, such ashetero-
clinic orbits @26,27# or chaos@28,29#, even at low dimension
(NI>4).

It is useful to transform the variablexi(t) to yi(t)
[ log„xi(t)… and to deal with the replicator equations, in th
form of difference equations by the simple Euler method,

yi~ t11!5yi~ t !1Dt„f i~ t !2 f̄ …, ~3!

f i~ t !5(
j

ai j e
yj (t), ~4!

f̄ ~ t !5(
i

eyi (t) f i~ t !, ~5!

where Dt is a small constant for the discretization, and
used as the unit of time in the following simulations a
figures. f i(t) and f̄ (t) denote the fitness ofi th species and
average fitness over all species, respectively. The trans
mation is effective, in particular, for numerical calculatio
because some ofxi(t)’s often take a very small value, whic
may cause underflow. Hereafter, we use Eqs.~3!–~5! in the
numerical calculations.

The extinction dynamics

We should note here that extinction is not well defined
the RE model with largeNI and random interactions becau
such a model generally has heteroclinic orbits. When a h
eroclinic orbit approaches asaddle, where some species ar
extinct, the population densities exponentially approach z
However, they never actually reach zero because the orb
bound in theinterior of the simplex~2!. In the vicinity of the
saddle, the values for these population densities are too s
to cause underflow by naive numerical calculations. Nev
theless, some of these populations eventually begin to rev
causing the orbit to leave for another saddle. This transit
among saddles continues cyclically or chaotically. The ex
nential approach of population to zero and its revival to
order O(1) play a significant role in heteroclinic orbits
However, in the real world, such a small population dens
cannot be sustained. In this sense, heteroclinic orbits h
never been believed to be biologically significant.

Considering the above problem, we introduce the para
eterd to the dynamics@Eqs.~1!–~2!# to represent the extinc
tion threshold; at each discrete time step, the population d
sity xk„5exp(yk)… is set to zero if this quantity becomes le
than d. The population densities of the surviving speci
$xi% ( iÞk) are then renormalized to satisfy( iÞkxi51. This
renormalization implies that the niche of an extinct specie
divided among the survivors. The diversity decreas
through the above process, and we denote its value byN. The
introduction ofd is also nothing but a finite size effect o
RE, becaused coincides with a minimum unit of reproduc
tion for each species, and its reciprocal 1/d corresponds to
the permissible population size of an ecosystem.

It must be noted here that the present model belongs
class of systems for which the dimension is a time-depend
variable. Since this time-dependence is inevitable not only
population dynamics@30,31#, but in many other fields as
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844 PRE 60KEI TOKITA AND AYUMU YASUTOMI
well, such a highly nonlinear model has never been syst
atically analyzed.

Whenever there is a given set of parametersA, d and an
initial diversity NI[N(t50), the initial state $xi(0)%
evolves until a steady state is achieved. Extinction never
curs in this steady state, and there remains a stable sub
system with a comparatively small number of surviving sp
cies ~core species! NF (<NI). Although almost all orbits
converge to an equilibrium point in this state, we also fi
periodic orbits. Chaotic orbits are very rare. Heteroclinic
bits are never achieved because the existence of the find
prohibits any orbit from approaching a saddle. Such stab
is always achieved by any finited. This is a new type of
destruction of a high dimensional attractor, which is, in ge
eral, calledcrisesin the theory of chaos@32#. Therefore, let
us refer to this kind of dynamics asextinction dynamics
~ED!. By a series of extensive numerical simulations,
investigate the features of ED, especially the dependenc
ED on three parameters:NI , v, andd.

From the point of view of random system theory, it
important to observe typical behavior for ED by executi
random averageof quantities over samples of a random m
trix A. Hereafter, we will, in general, write this average
^ . . . &A .

RESULTS

The basin-size distribution

The first results of this paper concern the basin-size
tribution for ED with a large number of basins of attractio
Here, we identify each ‘‘attractor’’ only by the compositio
of core species, not by its trajectory. In other words, eve
several isolated attractors coexist in a system of core spe
we do not discriminate between these attractors and we
gard them to be in one basin of ‘‘attraction.’’ The reason
this is that, in ED, such coexistence is rare, and this cla
fication of basins of attraction also agrees with the class
cation of subecosystems created by ED.

In order to obtain the basin-size distribution, we~a! iterate
ED starting from a sufficient number of random initial stat
in a system with the same parameters and the same ran
matrix A, ~b! count basin sizeSj as the number of initial
states that converge toj th attractor, and~c! make a rank-size
distributionS(n) by sorting$Sj% ’s, where the natural numbe
n denotes the rank of each basin, and can reach the
numberM of attractors found in the simulation. For examp
an attractor with rankn51 indicates that it has the large
basin sizeS(1), while another attractor with rankM means
that it has the smallest basin sizeS(M ). Therefore, in gen-
eral, the rank-size distributionS(n) is a nonincreasing func
tion of n. Moreover, the above process is iterated for a s
ficient number of random matricesA with the samev, and
we finally obtain a basin-size distribution^S(n)&A for a pa-
rameter set.̂S(n)&A’s for various parameter sets are show
in Fig. 1.

It is clear that the basin-size distribution^S(n)&A charac-
teristically follows a power law. Moreover, each exponent
the power depends only onNI , neither ond nor v. This
exclusive dependence onNI can be understood intuitively
because the number of combinations of core species~the
number of attractors! depends only onNI . Therefore, a
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largerNI provides a larger number of attractors and hence
smaller exponent. On the other hand, the independenced
strongly suggests that the basin-size distribution of the or
nal RE ~ED in the limit d→0) also follows the power law.
This conjecture is relevant to the hierarchical coexistence
an infinite number of attractors in RE@33#. The power law of
a rank-size relationship with an exponent near unity is of
referred to as Zipf’s law@34# in linguistics and other diverse
fields @35#.

The extinction curves

Figure 2 shows the second result of this paper: aver
diversity as a function of time,̂ N(t)&A ~the extinction

FIG. 1. Basin-size distributionŝS(n)&A ~vertical axis! as a
function of rankn ~horizontal axis! for ~a! NI564, sampled from
100 000 initial states and averaged over ten samples ofA and ~b!
NI5128 from 20 000 initial states and three samples ofA.

FIG. 2. Extinction curves@average diversitŷN(t)&A vs time t]
for various values ofNI with d50.0001 andv52.0. Each curve
represents an average taken over 1000 samples ofA.
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curve!. Two significant characteristics can be observed fr
this figure. The first is that the average final diversity^NF&A
is independent onNI . This result implies that no matter how
large the diversity of initial species, the average diversity
species in the final state is small by comparison. Tha
NF!NI . In other words, when a large random ecosyst
emerges as a result of a biotic fusion, a mass extinction
‘‘size’’ NI2^NF&A will occur. Second, the avalanche o
mass extinction begins after someinduction time@25# t I , and
ends in each case at nearly the same timetR;103(>t I). As
NI becomes larger,t I also becomes larger and approach
tR . Therefore, for a sufficiently largeNI , the extinction
curve shows a sharp drop att I . Such an abrupt mass extinc
tion occurring on a short time scale is highly relevant to
notion of punctuated equilibria@36#.

The induction time and the abrupt drop in diversity a
largeNI is explained by the small rate of change for eachxi
at t50, and a faster than exponential decay ofxi for extinct
species. At timet50, the absolute value of the fitnes
f i(0)[( j 51

NI ai j xj (0) @the first term in the parentheses of th
right-hand side of the equation~1!# for each speciesi is of
estimated orderO(Av/NI) by a simple calculation. The ab
solute value of the average fitnessf̄ (0)[( i 51

NI f i(0)xi(0)
~the second term in the parentheses! has the same order
Therefore, asNI becomes larger, the absolute value of t
change ratef i2 f̄ at t50 becomes smaller in proportion t
1/ANI , which makes the induction time larger because
smaller change rate makes populations change more slo
However, the rapid decay eventually drives populations i
extinction around the induction time. Therefore, almost
species, except for core species, are expected to becom
tinct synchronously in the limit of largeNI .

It should also be noted here not only that the aver
diversity ^NF&A of a core species is independent ofNI but
also that the distributionP(NF) of NF itself does not depend
on NI , as shown in Fig. 3.

FIG. 3. Distribution P(NF) of the final diversityNF of core
species for several values ofNI . The distribution was obtained
using 1000 samples of random matricesA ~1000 runs of extinction
dynamics!.
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Figure 4 concerns the variation of extinction curves w
v. As v becomes larger, the induction timet I becomes
shorter@Fig. 4~a!#, and ^NF&A becomes smaller@Fig. 4~b!#.
Consequently, when the order of the interspecies interac
coefficients becomes large compared to the absolute valu
the intraspecies ones ($aii 521%), the avalanche of mas
extinction begins earlier, and a smaller diversity of spec
survives. The extinction curves for several values ofd are
also shown in Fig. 5. It should be noted that the final div
sity ^NF&A is independent fromd. This means that, no matte
how smalld is, extinctions are inevitable in ED. This inev
tability is consistent with the fact that no extinction occurs
RE without the extinction threshold (d50). In fact, the
simulation and the analytical estimation equally sho

FIG. 4. ~a! Extinction curves@average diversitŷN(t)&A vs time
t] for various values ofv with NI564 andd50.0001, averaged
over 1000 samples ofA. ~b! The average diversity of the core sp
cies ^NF&A is shown as a function ofv.

FIG. 5. Extinction curves@average diversitŷN(t)&A vs time t]
for various values ofd with NI564 andv52.0, averaged over
1000 samples ofA.
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846 PRE 60KEI TOKITA AND AYUMU YASUTOMI
t I;2 log(d), and t I diverges to infinity in the limitd→0,
that is, no extinction occurs in finite time. From Figs. 2,
and 5, we can conclude that^NF&A depends only onv, but
not on NI nor d, which is in contrast with the paramete
dependence of̂S(n)&A only on NI .

The average fitness and the nature of the shrink matrix

Here we discuss the time development of average fitnef̄
through extinction dynamics, as depicted in Fig. 6. It sho
be noted that the average fitness takes on positive va
except during the short period at the beginning. This remi
us that the average fitness is a nondecreasing function i
interaction matrix is ensured to be symmetric, as in the eq
tion of selection in population genetics. The final value
the average fitnessf̄ ;0.4 is higher than what would be ex
pected for a randomly generated ecosystem with the s
diversity (NF;8). Thus, more stable ecosystems are s
organized by ED. We also observe that^ f̄ (t)&A does not
show a monotonic increase and reaches a maximum valu
a time neart I . This, in general, suggests that the avera
fitness shoots up in response to the avalanche of extinctio
low-fitness species around the induction time and set
down to a final value via competition among core specie

The time development for the distribution of elements
interaction matrices via extinction dynamics is depicted
Fig. 7. The average ofai j shifts to a positive value, which
means that the interaction matrix of the subecosystem
comes cooperative via extinction dynamics. This also c
tributes to an increase in average fitness. It should be n
that the distribution continuously holds its Gaussian distri
tion shape. Therefore, the interspecies interaction coeffici
of core species are still random, and various types of r
tionships among core species are realized by ED. The t
development of̂ ai j &A is also shown in Fig. 8.

FIG. 6. Time development of average fitnessf̄ (t) over 1000
samples ofA with NI564, v52.0, andd51027 ~solid line!. Each

dotted line represents one sample. The fitnessf̄ goes up and down
and, in general, the final value is not the highest.
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DISCUSSION

In this paper, we have ignored any effects of immigra
or invaders, which increase the diversity, and we have
cused on global biotic fusion where no species ever com
from the outside. Moreover, we did not consider any m
tants, because the avalanche of mass extinction occur
quickly that no significant evolution of mutants can occu
By neglecting these effects, the nature of extinction on
rather short time scale was exclusively clarified. Howev
by introducing the effect of increasing diversity~the process
of speciation! @37#, we can study the nature of ED on a muc
larger time scale. In fact, an analysis of the interesting pr

FIG. 7. Time development of the distribution^P(ai j )&A of ele-
ments $ai j % of interaction matrices averaged over 2000 samp
NI564, v52.0, andd51027.

FIG. 8. Time development of the average^ai j &A of elementsai j

of interaction matrices averaged over 2000 samples.NI564, v
52.0, andd51027.
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lem of whether ED showsself-organized criticality@4,9# is
in progress.
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